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Machine Learning for Upper Limb Flexion Movement 
Classification1

Edwin Duque2, José Villamizar3, Helmuth Trefftz4

Abstract

Introduction: This paper introduces the 
development and validation of a Machine 
Learning (ML) program aimed at discerning 
smooth and jittery arm movements during 
flexion/extension exercises. Objective: 
The study compares the efficacy of three 
classification algorithms—K-Nearest 
Neighbors (KNN), Support Vector Machine 
(SVM), and Logistic Regression—in 
differentiating flexion/extension movements 
with and without added weight. Method: Using 
a quasi-experimental design, participants 
voluntarily performed the exercise under two 
conditions: with and without a 5-kilogram 
dumbbell. Meticulous frame-by-frame 
extraction of movement parameters informed 
the data collection process. Results: 

Biomechanical analysis identified key 
features (minAngle, coefTrajectory, maxJerk, 
avgAcceleration, and frames) relevant for 
algorithm training. Post-normalization, KNN, 
Logistic Regression, and SVM demonstrated 
robust validation performance through metrics 
and confusion matrices. Detection of a user-
dependent data leak prompted a user-specific 
validation approach. Conclusion: This research 
amalgamates biomechanics and ML, yielding 
insights into algorithmic performance for 
detecting weighted exercises. Robust validation 
is crucial for ensuring the generalizability of 
classification models in real-world scenarios.

Keywords: Machine Learning, Medical 
technology, Medical Rehabilitation, Upper 
limb, Motor Assessment.
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Aprendizaje automático para la 
clasificación de movimientos de 

flexión del miembro superior

Resumen

Introducción. Este artículo presenta el 
desarrollo y validación de un programa de 
aprendizaje automático (ML, por sus siglas en 
inglés) diseñado para distinguir movimientos 
regulares y temblorosos del brazo durante 
ejercicios de flexión/extensión. Objetivo. El 
estudio compara la eficacia de tres algoritmos 
de clasificación: K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM) y 
Regresión Logística, en la diferenciación 
de movimientos de flexión/extensión con y 
sin peso adicional. Método. Utilizando un 
diseño cuasiexperimental, los participantes 
realizaron voluntariamente el ejercicio en 
dos condiciones: con y sin una mancuerna 
de 5 kilogramos. Un meticuloso proceso de 
extracción de parámetros de movimiento, 
cuadro por cuadro, informó el proceso de 
recopilación de datos. Resultados. El análisis 
biomecánico identificó características 
clave (minAngle, coefTrajectory, maxJerk, 
avgAcceleration y frames) relevantes para el 
entrenamiento del algoritmo. Después de la 
normalización, KNN, Regresión Logística y SVM 
demostraron una sólida actuación de validación 
mediante métricas y matrices de confusión. La 
detección de una fuga de datos dependiente 
del usuario llevó a un enfoque de validación 
específico para el usuario. Conclusión. Esta 
investigación amalgama la biomecánica y 
el ML, proporcionando información sobre 
el rendimiento algorítmico para detectar 
ejercicios con peso. La validación sólida es 
crucial para garantizar la generalización de 
modelos de clasificación en escenarios del 
mundo real.

Palabras clave: aprendizaje de máquina, 
tecnología médica, rehabilitación médica, 
miembro superior, evaluación motora.

Aprendizado de Máquina para 
Classificação de Movimentos de 

Flexão do Membro Superior

Resumo

Introdução: Este artigo apresenta o 
desenvolvimento e validação de um programa 
de Aprendizado de Máquina (ML, em inglês) 
projetado para distinguir movimentos suaves e 
tremidos do braço durante exercícios de flexão/
extensão. Objetivo: O estudo compara a eficácia 
de três algoritmos de classificação–K-Nearest 
Neighbors (KNN), Support Vector Machine 
(SVM) e Regressão Logística–na diferenciação 
de movimentos de flexão/extensão com e 
sem peso adicional. Método: Utilizando um 
design quase experimental, os participantes 
realizaram voluntariamente o exercício em 
duas condições: com e sem um haltere de 
5 quilogramas. Um meticuloso processo 
de extração de parâmetros de movimento, 
quadro a quadro, informou o processo de 
coleta de dados. Resultados: A análise 
biomecânica identificou características-
chave (minAngle, coefTrajectory, maxJerk, 
avgAcceleration e frames) relevantes 
para o treinamento do algoritmo. Após a 
normalização, KNN, Regressão Logística e 
SVM demonstraram uma sólida performance 
de validação por meio de métricas e matrizes 
de confusão. A detecção de um vazamento 
de dados dependente do usuário levou a uma 
abordagem de validação específica para o 
usuário. Conclusão: Esta pesquisa combina 
biomecânica e ML, fornecendo insights sobre 
o desempenho algorítmico na detecção de 
exercícios com peso. A validação robusta 
é crucial para garantir a generalização de 
modelos de classificação em cenários do 
mundo real.

Palavras-chave: Aprendizado de máquina, 
tecnologia médica, reabilitação médica, 
membro superior, avaliação motora.
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Introduction

The dynamic landscape of healthcare 
finds itself intricately woven with the threads 
of technological innovation, ushering in a 
transformative era in the analysis of human 
movement (Dindorf et al., 2022; Roggio et 
al., 2021). Recent years have witnessed the 
convergence of technology and healthcare, 
giving birth to novel methodologies that 
hold profound implications for the realms of 
rehabilitation and motor skill assessment 
(Kim et al., 2023; Sarhan et al., 2023). This 
paper embarks on a journey into this dynamic 
intersection, offering a meticulous exploration 
of a Machine Learning (ML) program crafted 
to distinguish between the fluidity of smooth 
arm movements and the jitteriness that may 
accompany them. Beyond its immediate impact 
on the assessment of upper limb exercises, this 
research embodies a broader endeavor aimed 
at reshaping our understanding and evaluation 
of human motion.

At the heart of this study lie arm flexion 
exercises, fundamental to daily motor 
activities. Participants engage in both 
unweighted and weighted iterations of these 
exercises, contributing to a nuanced dataset 
ripe for analysis. The attributes under scrutiny 
extend beyond conventional metrics like total 
trajectory, time to complete the task, velocity, 
acceleration, and jitter. Instead, they delve 
into intricate parameters that encapsulate 
the quality inherent in each movement. This 
comprehensive approach seeks to unravel the 
multifaceted nature of arm flexion, transcending 
simplistic classifications to offer a nuanced 
comprehension of the dynamics at play.

Against the backdrop of this exploration stand 
three prominent classification algorithms: 
K-Nearest Neighbors (KNN) (Zhang, 2016), 
Support Vector Machine (SVM) (Gholami 
and Fakhari, 2017), and Logistic Regression. 
Chosen for their diverse methodologies, these 

algorithms serve as the lens through which the 
study navigates the classification of flexion/
extension movements, both with and without 
added weight. The goal extends beyond mere 
categorization; it aims to distill meaningful 
insights capable of reshaping the landscape 
of movement analysis within healthcare.

As the narrative unfolds, the paper not 
only delves into the intricacies of algorithmic 
classification but meticulously details the 
design and execution of the experiment. Ten 
voluntary participants form the core of this 
study, engaging in a crafted experiment that 
involves the performance of arm flexions under 
varying conditions. The manual extraction 
of 2D coordinates from the shoulder, elbow, 
and wrist, coupled with sophisticated data 
processing techniques, paints a vivid picture 
of the intricacies inherent in human movement. 
This approach transcends the conventional, 
capturing both quantitative metrics and 
qualitative nuances, such as trembling, 
especially pertinent in individuals with spinal 
cord injuries.

In essence, this research surpasses the 
confines of a singular study; it embodies a 
transformative exploration at the nexus of 
healthcare and machine learning. Beyond its 
immediate applications in movement analysis, 
the findings stimulate contemplation on the 
broader integration of ML in healthcare. The 
potential for real-time feedback systems, 
personalized rehabilitation programs, and 
advancements in motor skill assessment opens 
up a realm of possibilities. As we navigate this 
juncture of innovation, the outcomes of this 
study not only contribute to the scientific 
discourse on movement analysis but also pave 
the way for a future where technology becomes 
an integral ally in our pursuit of enhanced 
healthcare methodologies.
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Related Work

Movement analysis has been integral in 
various treatments aimed at restoring mobility 
in patients grappling with motor difficulties 
arising from trauma or central nervous system 
disorders. The term “quality of movement” 
is defined in this context as an individual’s 
capacity to perform a movement in comparison 
to a predefined reference model, outlining 
the normal range for a specific movement or 
characteristic (Tao et al., 2016). This article 
explores a research endeavor wherein four 
distinct postures (Sitting, Standing, walking 
on flat surfaces, Gait on Stairs) are scrutinized. 
The objective is to evaluate functional mobility 
differentials between Parkinson and stroke 
patients, employing depth sensors for the 
precise capture of 3D joint positions.

The application of movement quality 
assessment extends beyond clinical contexts 
and rehabilitation; it is also a pivotal tool in 
optimizing athletic performance. Young and 
Reinkensmeyer (2014) exemplify this by 
investigating specialized posture movements in 
diving athletes, using human judges’ scores as 
benchmarks. Athletes benefit from a computer 
model during training sessions, which 
provides insights into areas of improvement 
for enhancing their scores. Furthermore, 
health professionals leverage movement 
quality assessments to gauge motor ability, 
functional capacity, and sensory functions 
through a diverse array of assessment tools.

In a specific study concentrating on upper 
limb assessments (Wang et al., 2018), seventeen 
distinct assessments were scrutinized to 
discern those specifically measuring the 
quality of movement. The findings revealed that 
only six assessments—ARAT, AMULA, AMAT, 
CAHAI, MESUPES, and MSS—yielded scores 
relevant to movement quality.

Optimizing patient rehabilitation demands 
precise progress measurement. Despite 

relying on subjective observation, a common 
challenge arises from potential variations in 
medical opinions among health professionals 
(Spooren et al., 2009). A preceding study by 
Duque et al. (2020)spinal cord or others nervous 
system injuries, must face different challenges 
for a complete recovery of physical functional 
impairment. An accurate and recurrent 
assessment of the patient rehabilitation 
progress is very important. So far, wearable 
sensors (e.g. accelerometers, gyroscopes 
addressed this by introducing quantitative 
elements into evaluations, particularly for 
those with upper limb difficulties. Leveraging 
noninvasive electronic devices and statistical or 
machine learning techniques, the study aimed 
to objectively assess patient status, mitigating 
the inherent subjectivity in qualitative 
assessments. This shift towards quantitative 
measures provides a standardized and data-
driven approach for health professionals, 
enhancing the precision and consistency of 
rehabilitation evaluations.

The increasing use of sensors and machine 
learning in movement analysis opens avenues 
for innovative rehabilitation approaches, 
emphasizing caution in data interpretation and 
predictions (Halilaj et al., 2018). For instance, 
Linkel et al. (2015) employed IMUs to model 
and compare movement quality between 
healthy individuals and those with upper 
limb disabilities due to stroke. Similarly, Van 
Kordelaar et al. (2014) discovered that, within 
the initial 8 weeks post-stroke, smoothness 
in movements improves, highlighting the 
significant impact of early-stage therapies 
on movement recovery. Contrarily, Huang 
and Patton (2016) revealed diverse movement 
patterns among patients, emphasizing 
the need for detailed insights, including 
distribution analysis using linear discriminant 
analysis, beyond mere summarized properties 
like total trajectory.

While the cited works predominantly 
focus on stroke-related movement analysis, 
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there exists a broader spectrum of research 
encompassing various motor disabilities. 
Notable examples include the use of depth 
sensors for Multiple Sclerosis patients 
(Kontschieder et al., 2014), grippers for 
Spinal Cord Injury patients (Lee et al., 2016), 
and investigations into movement patterns 
in Parkinson’s disease (Ferraris et al., 2018), 
Huntington’s disease (Bennasar et al., 2018), 
Cerebral Palsy (Iwasaki and Hirotomi, 2015), 
and even in healthy children (Alsamour et 
al., 2018).

Classification Algorithms

This experiment aims to assess three key 
classification algorithms, evaluating their 
efficacy in distinguishing between flexion/
extension movements performed with and 
without weight.

K-Nearest Neighbors (KNN).

KNN is a non-parametric, instance-based 
learning algorithm applicable for classification 
or regression. It involves a training phase, where 
instances of arm flexion exercises and their 
corresponding class labels (indicating whether 
the exercise is done correctly or not) are stored. 
In the classification phase, new samples are 
categorized based on their proximity to these 
labeled instances. The algorithm identifies the 
k nearest neighbors, and the class assignment 
for a new element is determined by the most 
frequent class in this list. Proximity between 
instances is measured using the Euclidean 
distance between multidimensional vectors.

Support Vector Machine (SVM).

SVM, a supervised learning algorithm for 
classification or regression, operates in a 
binary classification framework. Like KNN, 
the algorithm requires a set of labeled training 
instances, each associated with one of the two 
classes. It constructs a hyperplane, dividing the 

multidimensional space into two sub-spaces, 
one for each data cluster. During classification, 
SVM determines the side of the hyperplane on 
which a new instance lies, assigning it to the 
corresponding class in the binary classification.

Logistic Regression.

Logistic regression, a statistical model, 
utilizes a logistic function to estimate the 
probability of a binary dependent variable 
belonging to one of two classes. The logistic 
function scales the odds of the outcome 
linearly with the multiplicatively increased 
independent variables. Each independent 
variable has its own parameter (beta). 
Classification involves defining a cutoff value 
‘c,’ segregating probabilities into the two 
classes [0, c] and (c, 1].

Experiment: Materials and 
Methods

Incorporating a quasi-experimental design 
(Lazar et al., 2010), this research delves into 
the impact of added weight on upper limb 
flexion/extension movements. Participants 
voluntarily engage in two conditions: executing 
the exercise without added weight and with a 
5-kilogram dumbbell. This quasi-experimental 
approach, lacking random assignment, 
allows for a pragmatic exploration of real-
world scenarios. Through data collection 
and analysis, the study aims to unveil critical 
insights into the biomechanics of these 
movements, providing valuable implications 
for exercise performance.

To address research goals, ten (10) 
volunteers willingly participated in an 
experiment involving flexion/extension 
movements with and without added weight. 
Employing a 720p HD video recording at 30 
frames per second from the user’s side (figure 
1), the researcher strategically placed squared 
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(10cm x 10cm) black targets at the shoulder, 
elbow, and wrist positions. These targets 
facilitate precise detection of limb positions 
during the arm flexion exercise, enhancing the 
quality of data collection.

Figure 1.
Target placement at each position for detection

Source. Author’s own work.

For each participant, two videos captured 
repetitions of the flexion and extension 
movement. A repetition involves moving 
the wrist from the hip to the shoulder while 
keeping the elbow fixed to the torso. In the 
first video, participants performed five 
repetitions without added weight, while in 
the second video, a 5-kilogram dumbbell was 
introduced, allowing participants to perform N 
repetitions based on their capability. However, 
for movement analysis, only the initial five 
repetitions and the final five repetitions from 
each video were considered.

The manual processing of each video 
involves extracting 2D coordinates from 
the shoulder, elbow, and wrist by manually 
selecting the center of each target within the 
frame. To expedite this process, shoulder and 
elbow movements are not extracted for every 
frame, as they are nearly indistinguishable 
when the exercise is performed correctly. 
Instead, elbow coordinates are extracted every 
3 frames, and shoulder coordinates every 6 
frames. The coordinates between these frame 
jumps are calculated by dividing the difference 
between the previously extracted coordinates 
and the current ones by the number of omitted 
frames. The omitted frames’ coordinates 
are then generated by sequentially adding 
this difference to the previously calculated 
coordinates. In essence, the movement 
between omitted frames is assumed to follow 
a linear path with constant speed, and the 
missing coordinates are filled in accordingly.

Due to the significant movement of the 
wrist, its coordinates are extracted for each 
frame without omitting any frames. This 
process yields a nx3 matrix of x-y coordinate 
pairs, where each row contains the shoulder, 
elbow, and wrist coordinates in that order, and 
n represents the number of frames from the 
original video.

Data Processing

The first variable we calculate is the internal 
angle formed by the shoulder, elbow and wrist 
at each frame. This is obtained by calculating 
the dot product of the vectors elbow-wrist 
and elbow-shoulder. This variable itself is not 
used for the classification, but for calculating 
other significant variables. For example, we 
use the minimal and the maximal angle for 
each repetition. We also calculate the angular 
speed, taking a discrete approximation of the 
derivative of the angle respect to the time, with 
the delta of the angle and the delta of the time 
between consecutive frames.
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The delta of time is very small, and 
is constant for each repetition, so this 
approximation of the angular speed is 
very precise. We use the angular speed to 
estimate the average angular speed and the 
maximal angular speed, which we use for the 
classification. The minimal angular speed is 
not considered since it is very similar for every 
instance, mostly around 0, which happens at 
the moment of the change of direction when 
the wrist reaches its maximum height.

Another significant variable is the tremble 
coefficient. First, we define the Angular range 
of a repetition as the difference between the 
maximal angle and the minimal angle. This is 
a normalized measure for the total trajectory, 
since it does not depend on the anatomy of 
the person nor on the position/orientation of 
the camera. It only depends on how low the 
person started the repetition and how high the 
wrist went during it. Second, we define the total 
angular trajectory as the total angle traveled 
during the repetition. The difference when 
comparing this to the angular range, is that for 
the total angular trajectory, we also consider 
short movements caused by trembling (very 
common in people with a spinal cord injury). 
If the person does not tremble at all, both 
variables would have the same value.

The more the person trembles, the higher 
the difference between the total angular 
trajectory and the angular range will be. Based 
on this, we define the tremble coefficient as 
the ratio between the total angular trajectory 
and the angular range. Finally, there are other 
variables that we take that are not related to 
the angles between the shoulder, the elbow 
and the wrist such as time of completion 
by detecting the number of frames a user 
took to perform the complete exercise; 
other variables are derivatives like velocity, 
acceleration and jerkiness.

Results and Discussion

After all the data aggregation process 
where we calculate repetition movements 
by extracting frame by frame data and 
summarizing them to get minAngle, 
maxAngle, MeanAngle, number of frames 
required to reach a repetition, minSpeed, 
maxSpeed, avgSpeed, min Acceleration, 
maxAcceleration, avgAcceleration, minJerk, 
maxJerk, avgJerk, angRange, totalAng, and 
a coefficient trajectory explained in previous 
section as tremble coefficient.

Figure 2.
The p-values of each feature

Source. Author’s own work.

We performed the non-parametric 
Kolmogorov-Smirnoff test to check if there is 
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a significant difference between performing 
the exercise with weight versus without weight. 
Given that the null hypothesis is that both 
datasets come from the same distribution, we 
can check if the p-value is smaller than 0.01, 
in that case, the null hypothesis is rejected, 
which means that the two datasets come from 
different distributions. In figure 2 it is shown 
the p-values of each feature ordered from 
smallest to largest where the only variable 
that doesn’t deny that both datasets come from 
the same distribution is maxSpeed, because of 
this, it will be dropped from the data frame. We 
can also see that the variables with the lowest 
p-value are minAngle, coefTrajectory, frames, 
maxJerk and avgAcceleration.

Therefore, the first five features: 
coefTrajectory, minAngle, maxJerk, 
avgAcceleration, and frames; are taken as most 
relevant to train the algorithms. In fact, in figure 
3 a box plot is used to see their distribution 
behavior where variable sick equals to zero 
means repetition without weight and sick 
equals to one a repetition with weight. The 
box plots suggest that adding weight affects 
the distribution of the measured movement 
quality metrics, possibly indicating a change in 
the patients’ ability to perform the movements 
or the strategy they use to do so.

Figure 3.
Distribution of repetitions with and without weight

Source. Author’s own work.

After this, resulting variables were 
normalized, trained and validated using 
KNN, Logistic Regression and Support 
Vector Machine algorithms. Three algorithms 
perform well in the validation throwing 
metrics performance and confusion matrix 
behaving as figure 4 shows. All three models 

exhibit high accuracy and no false positives, 
indicating a strong ability to correctly identify 
normal movements. However, SVM and KNN 
show marginally superior performance over 
Logistic Regression in recognizing abnormal 
movements, as evidenced by their higher recall 
and F1 scores.
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Figure 4.
Algorithm Performance and Confusion Matrix Analysis

Source. Author’s own work.

Again, we can see that the three algorithms 
perform really well in the validation, which 
makes some sense because all of its variables 
were proved to be significant, but even 
considering this fact, there might be some 
data leak when the same user’s repetitions are 
on the training and validation datasets, since 

their variables behave very similarly. To test 
this idea, we will perform a similar procedure 
but instead of randomly selecting the training 
and validation data, we will pick some users’ 
repetitions to be in the validation dataset and 
the rest to be on the training dataset. Figure 
5 shows results after this procedure.

Figure 5.
Robustness assessment: user-based training and validation split

Source. Author’s own work.
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It is clear that this was indeed affecting 
the results from the previous test, meaning 
that the accuracy obtained only meant that if 
a repetition of a person who was part of the 
training data was classified, there was that 
high of a chance to get it right, however, when 
trying to classify a repetition from a person 
who was not part of the training data, there is 
this smaller chance of it being correct. In both 
ways of testing the accuracy of the training, we 
found the accuracy was heavily dependent on 
the data picked for training, in order to avoid 
that, a cross validation will be performed.

Conclusion And Future Work

In drawing conclusions from this study, 
it becomes evident that the application of 
machine learning algorithms, specifically 
K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), and Logistic Regression, 
presents a promising avenue for discerning the 
subtleties in arm movements during flexion and 
extension exercises. The robust performance 
of these algorithms in accurately classifying 
movements with and without added weight 
underscores their potential utility in evaluating 
the quality of upper limb exercises. The 
selection of features such as coefTrajectory, 
minAngle, maxJerk, avgAcceleration, 
and frames emerges as pivotal, reflecting 
their significance in capturing the nuanced 
variations inherent in arm flexion.

The experiment’s design, involving ten 
voluntary participants engaged in both weighted 
and unweighted arm flexion movements, lays 
the foundation for a nuanced understanding 
of motor activities. The manual extraction 
of 2D coordinates from the shoulder, elbow, 

and wrist, coupled with a sophisticated data 
processing approach, reveals the intricacies 
of arm movements beyond traditional 
metrics. The calculated variables, including 
internal angles, angular speed, and the 
innovative tremble coefficient, contribute to 
a comprehensive dataset that reflects not only 
the quantitative aspects of movement but also 
the qualitative nuances such as trembling in 
individuals with spinal cord injuries.

The results, validated through rigorous 
statistical tests and visualized in figures, 
provide compelling insights into the significance 
of the chosen features. The Kolmogorov-
Smirnoff test elucidates the impact of added 
weight on various movement attributes, 
with maxSpeed being the sole variable that 
doesn’t differentiate between exercises with 
and without weight. The emphasis on cross-
validation acknowledges and addresses 
potential data leak issues, ensuring the 
generalizability of the classification models 
beyond the confines of the training dataset.

As we navigate the intersection of healthcare 
and technology, the findings of this research 
not only contribute to the specific domain of 
movement analysis but also open avenues 
for broader applications in rehabilitation 
methodologies. The success of the machine 
learning models in accurately classifying 
arm movements encourages further 
exploration, prompting considerations for 
real-time feedback systems and personalized 
rehabilitation programs tailored to individual 
motor abilities. Ultimately, this study 
underscores the transformative potential of 
integrating machine learning into healthcare, 
offering nuanced insights that extend far 
beyond the realm of arm flexion analysis.
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