Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Algoritmos meta heurísticos para el aprendizaje de redes bayesianas

Algoritmos meta heurísticos para el aprendizaje de redes bayesianas



Abrir | Descargar


Sección
Artículos

Cómo citar
Oviedo, B., Puris, A., & Zhuma, E. (2018). Algoritmos meta heurísticos para el aprendizaje de redes bayesianas. Revista Lasallista De Investigación, 15(2). https://doi.org/10.22507/rli.v15n2a27

Dimensions
PlumX
Byron Oviedo

    Byron Oviedo,

    CvLAC

    Con este artículo se pretende obtener modelos basados en análisis probabilísticos de casos para la ayuda a la toma de decisiones en la educación y aprendizaje de los estudiantes de la UTEQ. Para la obtención del producto final, se ha distribuido el proceso de desarrollo en varias etapas. Objetivo Crear un modelo probabilístico para evaluar y diagnosticar a los estudiantes en función de un conjunto de características, las mismas que deberán ser aprendidas de forma automática mediante una generalización del modelo AutoClass permitiendo la existencia de variables ocultas, cada una de ellas afectando a un conjunto distinto de variables observables (respuestas de los alumnos a cuestiones planteadas por un sistema automático de aprendizaje). Materiales y Métodos. Nuestro estudio se llevará a cabo para para definir otra forma de aprendizaje estructural basado en la búsqueda de estructuras a través de modelos metaheurísticas evolutivas. Resultados Este modelo permitirá a las autoridades de la UTEQ determinar inconvenientes y contratiempos en el proceso de enseñanza aprendizaje. A la vez los resultados obtenidos permitirán una toma de decisiones inmediata para solucionar los problemas detectados y de esta manera cumplir con la misión institucional de formar profesionales con visión científica y humanista capaces de desarrollar investigaciones, crear tecnologías, mantener y difundir nuestros saberes y culturas ancestrales, para la construcción de soluciones a los problemas de la región y el país. Conclusiones se optimización de malla variable (VMO) metaheurístico al aprendizaje estructural de los clasificadores de redes bayesianas (BVMO).

    Visitas del artículo 309 | Visitas PDF 193


    Descargas

    Los datos de descarga todavía no están disponibles.
    Sistema OJS 3.4.0.7 - Metabiblioteca |