Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Impacto de Intensidad Lumínica en la Germinación y Crecimiento de Cannabis sativa en Acuaponía

Impact of Light Intensity on Germination and Gowth of Cannabis sativa in Aquaponics System



Abrir | Descargar


Sección
Artículos

Cómo citar
David Ruales, C. A., Flórez Restrepo, C. A., Serna González, A., & Andrea Gomez, P. (2025). Impacto de Intensidad Lumínica en la Germinación y Crecimiento de Cannabis sativa en Acuaponía. Producción + Limpia, 19(2), 103-123. https://doi.org/10.22507/

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.


Carlos Arturo David Ruales,

PhD, MSc, Esp. Biol. Docente del programa de Zootecnia de la Unilasallista. Grupo de investigación GIPDTA de Unilasallista.


César Augusto Flórez Restrepo,

MSc, Mat. Director de Ciencias Básicas de la Unilasallista. Grupo de investigación G3IN de Unilasallista. 


Alejandro Serna González,

PhD, Qco, Profesor del área de ciencias básicas. Grupo de Investigación en Alimentos – GIAL de Unilasallista. 


Paula Andrea Gomez,

MSc, Adm. Coordinadora del programa de Administración de Empresas Agropecuarias. Grupo de investigación DELTA de Unilasallista.


Introducción: los sistemas acuapónicos permiten la sinergia positiva entre plantas y peces; el uso de este tipo de sistema productivo con diferencias en la intensidad lumínica en la germinación y crecimiento no se ha evaluado en Cannabis sativa; planta milenaria que ha cobrado relevancia por sus variados usos y aplicaciones. Objetivo: evaluar el efecto de la intensidad lumínica sobre la germinación y algunas características químicas de Cannabis sativa en un sistema acuapónico. Materiales y métodos: en un sistema acuapónico de biopelícula asociado a un cultivo de tilapia, con luz blanca (T1), luz roja (T2) y un control (luz natural-T3); se evaluaron germinación, crecimiento, grosor del tallo, capacidad antioxidante y concentración de polifenoles en C. sativa; además se registró calidad de agua y zootécnicos para los peces. Resultados: la germinación fue del 87,5%, 75,2% y 71,87% para T1, T2 y T3 respectivamente. Los valores de altura fueron significativamente diferentes entre los tratamientos (p< 0.05), siendo T3 el mayor con 0,6485 cm/día. En T1 la capacidad antioxidante y la concentración de polifenoles fueron significativamente menores cuando comprados con T2 y T3. Conclusiones: la intensidad lumínica (IL) no presentó influencia sobre el porcentaje de germinación, ni sobre el grosor de los tallos de las plantas, además se observa una influencia determinante y significativa de la IL sobre la concentración de polifenoles y la capacidad antioxidante; por otro lado el montaje acuapónico presentó condiciones de confort para el crecimiento de la tilapia. 


Visitas del artículo 31 | Visitas PDF 20


Descargas

Los datos de descarga todavía no están disponibles.
  1. Abdel-Kader, M. S., Radwan, M. M., Metwaly, A. M., Eissa, I. H., Hazekamp, A., & ElSohly, M. A. (2023). Chemistry and Biological Activities of Cannflavins of the Cannabis Plant. Cannabis and Cannabinoid Research, 8(6), 974–985. https://doi.org/10.1089/can.2023.0128
  2. Ahmad, A., Sheikh Abdullah, S. R., Hasan, H. A., Othman, A. R., & Ismail, N. ‘Izzati. (2021). Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. Journal of Environmental Management, 287, 112271. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112271
  3. Al-Zahrani, M. S., Hassanien, H. A., Alsaade, F. W., & Wahsheh, H. A. M. (2023). Effect of Stocking Density on Sustainable Gowth Performance and Water Quality of Nile Tilapia-Spinach in NFT Aquaponic System. In Sustainability (Vol. 15, Issue 8). https://doi.org/10.3390/su15086935
  4. Al-Zahrani, M. S., Hassanien, H. A., Alsaade, F. W., & Wahsheh, H. A. M. (2024). Sustainability of Gowth Performance, Water Quality, and Productivity of Nile Tilapia-Spinach Affected by Feeding and Fasting Regimes in Nutrient Film Technique-Based Aquaponics. In Sustainability (Vol. 16, Issue 2). https://doi.org/10.3390/su16020625
  5. Alameen, A. M., Devi, K. N., Kumar, S. D., Gunabal, S., Krishnaveni, N., Gowthami, A., Sinduja, S., Roopavathy, J., Santhanam, P., Jebapriya, G. R., Saranya, M., Aravinth, A., Dhanasundaram, S., & Perumal, P. (2023). A sustainable utilization of aquaculture wastewater for the production of commercially important tilapia fish and plants (mint and chickpea) in improved integated aqua-agiculture system. Bioresource Technology Reports, 21, 101313. https://doi.org/https://doi.org/10.1016/j.biteb.2022.101313
  6. Association, A. P. H., & American Water Works Association; Water Environment Fedaration. (2012). Standar Methods For the Examination of Water and Waste water (L. S. Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri (ed.); 22ND EDITI). Port City Press.
  7. Bahji, A., & Stephenson, C. (2019). International Perspectives on the Implications of Cannabis Legalization: A Systematic Review & Thematic Analysis. In International Journal of Environmental Research and Public Health (Vol. 16, Issue 17). https://doi.org/10.3390/ijerph16173095
  8. Beletsky, A., Liu, C., Lochte, B., Samuel, N., & Gant, I. (2024). Cannabis and Anxiety: A Critical Review. Medical Cannabis and Cannabinoids, 7(1), 19–30. https://doi.org/10.1159/000534855
  9. Chaki, M., Begara-Morales, J. C., & Barroso, J. B. (2020). Oxidative stress in plants. Antioxidants, 9(6). https://doi.org/10.3390/antiox9060481
  10. Chen, Y., Sun, X., Fang, L., Jiang, X., Zhang, X., Ge, Z., Wang, R., & Wang, C. (2022). Optimization of Ultrasound-Assisted Extraction of Polyphenols from Ilex latifolia Using Response Surface Methodology and Evaluation of Their Antioxidant Activity. Molecules 2022, Vol. 27, Page 3999, 27(13), 3999. https://doi.org/10.3390/MOLECULES27133999
  11. David-Ruales, C.A., Machado-Fracalossi, D., Betancur-Gonzalez, E.M., Rodríguez-Franco, N., Castañeda-Álvarez, G.D., Florez-Restrepo, C., & Vásquez-Torres, W. (2020). Relaciones alométricas en estadios tempranos de la especie Brycon moorei Steindachner (Characidae), en condiciones controladas. Actualidades Biológicas, 42(113). https://doi.org/10.17533/udea.acbi.v42n113a02
  12. Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., & Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35, 100547. https://doi.org/10.1016/J.FBIO.2020.100547
  13. El-Sayed, A.-F. M. (2020a). Chapter 2 - Taxonomy and basic biology (A.-F. M. B. T.-T. C. (Second E. El-Sayed (ed.); pp. 21–31). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816509-6.00002-1
  14. El-Sayed, A.-F. M. (2020b). Chapter 4 - Environmental requirements (A.-F. M. B. T.-T. C. (Second E. El-Sayed (ed.); pp. 47–67). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816509-6.00004-5
  15. El-Sayed, A.-F. M. (2020c). Chapter 7 - Nutrition and feeding (A.-F. M. B. T.-T. C. (Second E. El-Sayed (ed.); pp. 135–172). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816509-6.00007-0
  16. El-Sayed, A.-F. M., & Fitzsimmons, K. (2023). From Africa to the world—The journey of Nile tilapia. Reviews in Aquaculture, 15(S1), 6–21. https://doi.org/https://doi.org/10.1111/raq.12738
  17. Endut, A., Jusoh, A., Ali, N., Wan Nik, W. B., & Hassan, A. (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology, 101(5), 1511–1517. https://doi.org/https://doi.org/10.1016/j.biortech.2009.09.040
  18. FAO. (2024). World Fisheries and Aquaculture Towards Blue Transformation. (Food and Agiculture Organization of the United Nations (ed.)). https://doi.org/https://doi.org/10.4060/cc0461en
  19. Fraga-Corral, M., Ronza, P., Garcia-Oliveira, P., Pereira, A. G., Losada, A. P., Prieto, M. A., Quiroga, M. I., & Simal-Gandara, J. (2022). Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products. Trends in Food Science & Technology, 119, 23–35. https://doi.org/https://doi.org/10.1016/j.tifs.2021.11.026
  20. Frassinetti, S., Moccia, E., Caltavuturo, L., Gabriele, M., Longo, V., Bellani, L., Giorgi, G., & Giorgetti, L. (2018). Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chemistry, 262, 56–66. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.04.078
  21. Georgieva, M., & Vassileva, V. (2023). Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. International Journal of Molecular Sciences, 24(6). https://doi.org/10.3390/ijms24065105
  22. Isidore, E., Karim, H., & Ioannou, I. (2021). Extraction of phenolic compounds and terpenes from cannabis sativa l. By-products: From conventional to intensified processes. Antioxidants, 10(6). https://doi.org/10.3390/antiox10060942
  23. Islam, M. J., Ryu, B. R., Rahman, M. H., Rana, M. S., Cheong, E. J., Wang, M.-H., Lim, J.-D., Hossain, M. A., & Lim, Y.-S. (2022). Cannabinoid accumulation in hemp depends on ROS generation and interlinked with morpho-physiological acclimation and plasticity under indoor LED environment. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.984410
  24. Izzo, L., Castaldo, L., Narváez, A., Gaziani, G., Gaspari, A., Rodríguez-Carrasco, Y., & Ritieni, A. (2020). Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences using UHPLC-Q-Orbitrap HRMs. Molecules, 25(3), 1–12. https://doi.org/10.3390/molecules25030631
  25. Jenkins, M.W. and Livesay, C. B. (2021). Photosynthetic Performance and Potency of Cannabis sativa L. Gown under LED and HPS Illumination. Agicultural Sciences, 12, 293–304. https://doi.org/https://doi.org/10.4236/as.2021.123019
  26. Johnson, J. B., Mani, J. S., & Naiker, M. (2023). Microplate Methods for Measuring Phenolic Content and Antioxidant Capacity in Chickpea: Impact of Shaking. Engineering Proceedings 2023, Vol. 48, Page 57, 48(1), 57. https://doi.org/10.3390/CSAC2023-15167
  27. Klem, K., Gargallo-Garriga, A., Rattanapichai, W., Oravec, M., Holub, P., Veselá, B., Sardans, J., Peñuelas, J., & Urban, O. (2019). Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. Frontiers in Plant Science, 10.
  28. Kousar, R., Shafi, N., Andleeb, S., Ali, N. M., Akhtar, T., & Khalid, S. (2020). Assessment and incidence of fish associated bacterial pathogens at hatcheries of Azad Kashmir, Pakistan. In Brazilian Journal of Biology (Vol. 80). scielo.
  29. Lalge, A.; Cerny, P.; Trojan, V.; Vyhnanek, T. (2017). The effects of red, blue and white light on the gowth and development of Cannabis sativa L. Mendel Net 2017, 646–651.
  30. Lennard, W. A. (2015). Aquaponics: a nutrient dynamic process and the relationship to fish feeds. World Aquaculture, 46(3), 20–23.
  31. Lennard, W. A., & Leonard, B. V. (2006). A Comparison of Three Different Hydroponic Sub-systems (gavel bed, floating and nutrient film technique) in an Aquaponic Test System. Aquaculture International, 14(6), 539–550. https://doi.org/10.1007/s10499-006-9053-2
  32. Li, Z., Liu, Y., Xiang, J., Wang, C., Johnson, J. B., & Beta, T. (2023). Diverse polyphenol components contribute to antioxidant activity and hypoglycemic potential of mulberry varieties. LWT, 173, 114308. https://doi.org/https://doi.org/10.1016/j.lwt.2022.114308
  33. Love DC, JP, F., L, G., ES, H., JA, F., & Li X. (2014). An International Survey of Aquaponics Practitioners. PLoS ONE, 9(7), e102662. https://doi.org/https://doi.org/10.1371/journal.pone.0102662
  34. Malabadi, B., Kolkar, K. P., Chalannavar, R.K., Vassanthini, R., & Mudigoudra, B. S. (2023). Industrial Cannabis sativa: Hemp Plastic-Updates Ravindra. World Journal of Advanced Research and Reviews, 20(1). https://doi.org/10.30574/wjarr.2023.20.1.2102
  35. Murcia, J. D. (2023). En 2022, la acuicultura creció 20% y la tilapia roja ocupó 92% del mercado de EE.UU. AGONEGOCIOS.
  36. Oladimeji, S. A., Okomoda, V. T., Olufeagba, S. O., Solomon, S. G., Abol-Munafi, A. B., Alabi, K. I., Ikhwanuddin, M., Martins, C. O., Umaru, J., & Hassan, A. (2020). Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Science & Nutrition, 8(5), 2307–2315. https://doi.org/https://doi.org/10.1002/fsn3.1512
  37. Oroian, M., Ursachi, F., & Dranca, F. (2020). Ultrasound-Assisted Extraction of Polyphenols from Crude Pollen. Antioxidants, 9(4). https://doi.org/10.3390/ANTIOX9040322
  38. Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Haїssam Jijakli, M., & Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26(3), 813–842. https://doi.org/10.1007/s10499-018-0249-z
  39. Pollastro F, Minassi A, F. L. (2018). Cannabis Phenolics and their Bioactivities. Curr Med Chem., 25(10), 1160–1185. https://doi.org/10.2174/0929867324666170810164636
  40. Rakocy, J.E., Shultz, R.C., Bailey, D.S., Thoman, E. S. (2004). Aquaponic production of Acta, tilapia and basil: comparing a batch and staggered cropping system. Hortic. (Wagening.), 648, 63–69. https://doi.org/https://doi.org/10.17660/ActaHortic.2004.648. 8.
  41. Ravindra, B., Malabadi, R. B., Kolkar, K. P., & Chalannavar, R. K. (2023). Industrial Cannabis sativa: Role of hemp (fiber type) in textile industries. World Journal of Biology Pharmacy and Health Sciences, 16(2). https://doi.org/10.30574/wjbphs.2023.16.2.0450
  42. Rodriguez-Morrison V, Llewellyn D, Z. Y. (2021). Cannabis Yield, Potency, and Leaf Photosynthesis Respond Differently to Increasing Light Levels in an Indoor Environment. Front Plant Sci., 11(12), 646020. https://doi.org/10.3389/fpls.2021.646020.
  43. Romero-Sandoval, E. A., Fincham, J. E., Kolano, A. L., Sharpe, B. N., & Alvarado-Vázquez, P. A. (2018). Cannabis for Chronic Pain: Challenges and Considerations. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 38(6), 651–662. https://doi.org/https://doi.org/10.1002/phar.2115
  44. Roosta, H. R. (2014). Effects of Foliar Spray of K on Mint, Radish, Parsley and Coriander Plants in Aquaponic System. Journal of Plant Nutrition, 37(14), 2236–2254. https://doi.org/10.1080/01904167.2014.920385
  45. Sorokin A, Yadav NS, Gaudet D, K. I. (2020). Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. Plant Signal Behav., 15(8), 1780037. https://doi.org/10.1080/15592324.2020.1780037.
  46. Sorokin A, Yadav NS, Gaudet D, K. I. (2021). Development and Standardization of Rapid and Efficient Seed Germination Protocol for Cannabis sativa. Bio Protoc., 5(11(1)), e3875. https://doi.org/10.21769/BioProtoc.3875.
  47. Stasiłowicz-Krzemień, A., Sip, S., Szulc, P., & Cielecka-Piontek, J. (2023). Determining Antioxidant Activity of Cannabis Leaves Extracts from Different Varieties—Unveiling Nature’s Treasure Trove. Antioxidants, 12(7). https://doi.org/10.3390/antiox12071390
  48. Steed, G., Ramirez, D. C., Hannah, M. A., & Webb, A. A. R. (2021). Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science, 372(6541), eabc9141. https://doi.org/10.1126/science.abc9141
  49. Team, R. C. (2024). A lenguage and environment for statistical Computing. https://doi.org/HttpS//www.R proyect.org
  50. Teh, S.-S., & Birch, E. J. (2014). Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrasonics Sonochemistry, 21(1), 346–353. https://doi.org/https://doi.org/10.1016/j.ultsonch.2013.08.002
  51. Wei, X., Zhao, X., Long, S., Xiao, Q., Guo, Y., Qiu, C., Qiu, H., & Wang, Y. (2021). Wavelengths of LED light affect the gowth and cannabidiol content in Cannabis sativa L. Industrial Crops and Products, 165, 113433. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113433
  52. Wielgus, K., Luwanska, A., Lassocinski, W., & Kaczmarek, Z. (2008). Estimation of Cannabis sativa L. Tissue Culture Conditions Essential for Callus Induction and Plant Regeneration. Journal of Natural Fibers, 5(3), 199–207. https://doi.org/10.1080/15440470801976045
  53. Zaheer, S., Kumar, D., Khan, M. T., Giyanwani, P. R., & Kiran, F. N. U. (2018). Epilepsy and Cannabis: A Literature Review. Cureus, 10(9), e3278. https://doi.org/10.7759/cureus.3278
Sistema OJS 3.4.0.7 - Metabiblioteca |