Skip to main navigation menu Skip to main content Skip to site footer

Bactericidal effect of UV -C light and ozone on Escherichia coli using response surface methodology

Efecto bactericida de la luz UV-C y ozono sobre Escherichia coli utilizando metodología de superficie de respuestas




Section
Artículos

How to Cite
Martínez, Óscar, Miranda, A., & Ríos-Moreno, A. (2025). Bactericidal effect of UV -C light and ozone on Escherichia coli using response surface methodology. Revista Lasallista De Investigación, 21(2), 10-28. https://doi.org/10.22507/

Dimensions
PlumX

Óscar Martínez,

Doctor en Biotecnología y Bioprocesos industriales de la Universidad de Almería, España. Profesor titular de Biotecnología y Fisiología Animal en la Facultad de Ciencias Naturales y Exactas de la Universidad Autónoma de Chiriquí, Panamá. 


Ariel Miranda,

Licenciado en Biología por la escuela de Biología, Facultad de Ciencias Naturales y Exactas de la Universidad Autónoma de Chiriquí, Panamá.


Alex Ríos-Moreno,

Doctor en Ingeniería Agraria, Alimentaria, Sostenible Forestal y del Desarrollo Rural de la Universidad de Córdoba, España. Profesor investigador de la Facultad de Ciencias Agropecuarias de la Universidad de Panamá.


Introduction. Ultraviolet light (UV-C) and Ozone (O3) are well established and increasingly popular alternatives to chemical products for disinfecting of drinking water, wastewater, and industrial water of varying qualities. A wide range of applications can now be accommodated by UV disinfection systems. Objective. This study evaluated the optimization of variables (time, distance, and ozone) on the growth of Escherichia coli colonies was evaluated. Materials and methods. To carry out the study, UV - C lamps and ozone generators were used, with a wavelength of 254 nm and a power of 25 watts. A total of 56 plates with nutrient medium were prepared, and the bacteria were planted using the striae method. All plates were exposed at different times and distances, to UV-C radiation and ozone. The experiments were developed using a central compound design and applying the combinations provided by the Minitab 19 statistical software. Data were analyzed according to the response surface design. The bacterial count was evaluated after 48 hours and was carried out by the surface area method. Results. The results show that the model obtained with the experimental design is significantly acceptable with an R2 (adjusted) of 70.84 %, when working with living organisms. Conclusions. The Pareto graphs of the analysis of variance suggest that the distance factor is significant with UV-C radiation; with a 95 % confidence interval to obtain a minimum contamination, while the ozone design does not appear to be significant in direct UV-C light exposure.


Article visits 29 | PDF visits 37


Downloads

Download data is not yet available.
  1. Blatchley, E. R., Brenner, D. J., Claus, H., Cowan, T. E., Linden, K. G., Liu, Y, ... and Sliney, D. H. (2023). Far UV - C radiation: An emerging tool for pandemic control. Critical Reviews in Environmental Science and Technology, 53(6), 733-753. https://doi.org/10.1080/10643389.2022.2084315.
  2. Brodowska, A. J. and Śmigielski, K. (2015). Ozonation–an alternative decontamination method for raw plant materials. Biotechnology and Food Sciences, 77(1), 37-43.
  3. Byrns, G., Barham, B., Yang, L., Webster, K., Rutherford, G., Steiner, G., Petras, D. y Scannell, M. (2021). Usos y limitaciones de la lámpara ultravioleta germicida portátil para la desinfección de superficies. Journal of Occupational and Environmental Hygiene, 18(sup1), S75-S85. https://doi.org/10.1080/15459624.2021.1877057.
  4. Cheng, Y., Chen, H., Sánchez Basurto, L. A., Protasenko, V., Bharadwaj, S., Islam, M. y Moraru, C. I. (2020). Inactivation of Listeria and E. coli by Deep-UV LED: effect of substrate conditions on inactivation kinetics. Scientific reports, 10(1), 3411. https://doi.org/10.1016/j.lwt.2012.03.0138/s41598-020-60459-8.
  5. Chuajedton, A., Aoyagi, H., Uthaibutra, J., Pengphol, S. y Whangchai, K. (2017). Inactivation of Escherichia coli O157: H7 by treatment with different temperatures of micro-bubbles ozone containing water. International Food Research Journal, 24(3), 1006-1010.
  6. Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R., Margalho. L., Pimentel, T., Silva, M., Freitas, M., Granato, D., Santana, A., Duart, M y Cruz, A. G. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in food science & technology, 102, 146-154. https://doi.org/10.1016/j.tifs.2020.06.001.
  7. Gorito, A. M., Pesqueira, J., Moreira, N. F., Ribeiro, A. R., Pereira, F. R., Nunes, O.C., Almeida, M. R. y Silva, A. M. (2021). Ozone-based water treatment (O3, O3/UV, O3/H2O2) for removal of organic micropollutants, bacteria inactivation and regrowth prevention. Journal of Environmental Chemical Engineering, 9(4), 105315. https://doi.org/10.1016/j.jece.2021.105315.
  8. Jeon, M. J. y Ha, J. W. (2018). Efficacy of UV - A, UV - B, and UV - C irradiation on inactivation of foodborne pathogens in different neutralizing buffer solutions. Lwt, 98, 591-597. https://doi.org/10.1016/j.lwt.2018.09.030.
  9. Kodoth, V. y Jones, M. (2015). The Effects of Ultraviolet Light on Escherichia coli. Journal of Emerging Investigators, 102, 23-28.
  10. La Rosa-Nájera, D., Rebolledo-Ramírez, F. L., Segura-Ceniceros, E. P., Mendoza, F. J. y Vargas-Segura, A. I. (2023). Evaluación del efecto bactericida de la luz UV-LED sobre impresiones de alginato. Avances en Odontoestomatología, 39(1), 42-48.
  11. Lee, C. L., Kim, G. H. y Yoon, K. S. (2021). Effects of combined aerosolization with ultraviolet C light-emitting diode on enterohemorrhagic Escherichia coli and Staphylococcus aureus attached to soft fresh produce. Foods, 10(8), 1834. https://doi.org/10.3390/foods10081834.
  12. Malik, S. A., Swee, T. T., Nik-Malek, N., Yaha, A., Emoto, T., Akutawa, M., Meng, L., Hou, T., Alang, T and Chia-Hiik, K. L. (2019). Effectiveness of visible and ultraviolet light emitting diodes for inactivation of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: A comparative study. Malaysian Journal of Fundamental and Applied Sciences, 15(4), 572-576. https://doi.org/10.11113/mjfas.v15n4.1207.
  13. Martínez de Alba, A. E., Rubio, M. B., Morán-Diez, M. E., Bernabéu, C., Hermosa, R. y Monte, E. (2021). Microbiological evaluation of the disinfecting potential of UV-C and UV-C plus ozone generating robots. Microorganisms, 9(1), 172. https://doi.org/10.3390/microorganisms9010172.
  14. Menezes, N. M. (2020). Inactivation of heat-resistant filamentous fungi in corn soil by ultraviolet light (UV-C).
  15. Mohamed, O. A., Masood, S. H. y Bhowmik, J. L. (2016). Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Applied Mathematical Modelling, 40(23-24), 10052-10073.
  16. Padma Ishwarya, S., Ahmad, M. H., Nandu Lal, A. M., Silpa, V. y Venkatesh, T. (2022). Non-electro-Technologies: Gamma Rays, UV Light, Ozone, Photodynamic and Membrane Processing. In Nonthermal Processing in Agri-Food-Bio Sciences: Sustainability and Future Goals (pp. 253-308). Cham: Springer International Publishing.
  17. Pihen, C., Mani-López, E., Franco-Vega, A., Jiménez-Munguía, M. T., López-Malo, A. y Ramírez-Corona, N. (2023). Performance of UV-LED and UV-C treatments for the inactivation of Escherichia coli ATCC 25922 in food model solutions: Influence of optical and physical sample characteristics. Innovative Food Science & Emerging Technologies, 85, 103314. https://doi.org/10.1016/j.ifset.2023.103314.
  18. Roy, S. (2017). Impact of UV Radiation on Genome Stability and Human Health. In: S. Ahmad (eds) Ultraviolet Light in Human Health, Diseases and Environment. Advances in Experimental Medicine and Biology, vol 996. Springer, Cham. https://doi.org/10.1007/978-3-319-56017-5_17.
  19. Rowen, R. J. (2019). Ozone and oxidation therapies as a solution to the emerging crisis in infectious disease management: a review of current knowledge and experience. Medical Gas Research, 9(4), 232-237. Doi: 10.4103/2045-9912.273962.
  20. Różańska, A., Walkowicz, M., Bulanda, M., Kasperski, T., Synowiec, E., Osuch, P. y Chmielarczyk, A. (2023). Evaluation of the Efficacy of UV - C Radiation in Eliminating Microorganisms of Special Epidemiological Importance from Touch Surfaces under Laboratory Conditions and in the Hospital Environment. Healthcare, 11(23), 3096. https://doi.org/10.3390/healthcare11233096.
  21. Setlow, P. y Christie, G. (2023). New thoughts on an old topic: secrets of bacterial spore resistance slowly being revealed. Microbiology and Molecular Biology Reviews, 87(2), e00080-22. https://doi.org/10.1128/mmbr.00080-22.
  22. Shibai, A., Takahashi, Y., Ishizawa, Y., Motooka, D., Nakamura, S., Ying, B. W. y Tsuru, S. (2017). Mutation accumulation under UV radiation in Escherichia coli. Scientific Reports, 7(1), 14531. https://doi.org/10.1038/s41598-017-15008-1.
  23. Song, C., Wen, R., Zhou, J., Zeng, X., Kou, Z., Li, Y., Yung, F. y Wu, R. (2022). UV C light from a light-emitting diode at 275 nanometers shortens wound healing time in bacterium-and fungus-infected skin in mice. Microbiology Spectrum, 10(6), e03424-22. https://doi.org/10.1128/spectrum.03424-22.
Sistema OJS 3.4.0.7 - Metabiblioteca |