Skip to main navigation menu Skip to main content Skip to site footer

Obtaining routes for the distribution of post-consumer textile waste with Open Capacitated Vehicle Routing Problem multi-depot OCVRP

Obtención de rutas para la distribución de residuos textiles posconsumo con Open Capacitated Vehicle Routing Problem OCVRP multidepósito




Section
Artículos

How to Cite
Suárez Castro, R. M., & Rodríguez Florián, R. L. (2025). Obtaining routes for the distribution of post-consumer textile waste with Open Capacitated Vehicle Routing Problem multi-depot OCVRP . Revista Lasallista De Investigación, 21(2), 29-46. https://doi.org/10.22507/

Dimensions
PlumX

Ruth Milena Suárez Castro,

Magíster en Ingeniería Industrial de la Universidad Distrital Francisco José de Caldas, ingeniera industrial. Docente investigadora y miembro del grupo Geicos de la Universitaria Agustiniana.


Román Leonardo Rodríguez Florián,

Magíster en TIC para la Educación, especialista en Pedagogía y Docencia, ingeniero de producción. Docente investigador y miembro del grupo Geicos de la Universitaria Agustiniana.


Introduction. The volume of post-consumer clothing that is disposed of annually in landfills is causing environmental damage, which is why it is necessary to search for alternatives to take advantage of this waste. There are few companies that are recovering fibers or generating new products; however, donation and marketing are the most used alternatives. Vehicle Routing Problem VRP models have focused on solid waste management in general, but textile waste has not been studied specifically. Objective: The aim is to apply a routing model for the distribution of post-consumer clothing to social foundations that serve vulnerable populations or that sell second-hand clothing. Materials and methods. The Arc of the cheapest path heuristic and the Guided Local Search metaheuristic are applied in a multi-depot OCVRP model to minimize the distance traveled by a fleet of vehicles with homogeneous capacity, which leaves from 10 collection points to 39 social foundations. Results. To distribute 40 tons of post-consumer clothing from 10 collection points to 39 social foundations, a fleet of 10 vehicles with a loading capacity of 4.5 tons is required. The minimum distance to travel would be 180 km with the Path Cheapest Arc heuristic and 159 km with Guided Local Search. Conclusions. The routes from multiple collection points to different foundations that are obtained through the application of heuristics and metaheuristics are approximate solutions to the optimal one, but easier to find than by exact methods.


Article visits 6 | PDF visits 11


Downloads

Download data is not yet available.
  1. Amed, I., Berf, A., Balchandani, A., Hedrich, S., Jensen, J. E., Straub, M., Rölkens, F., Young, R., Brown, P., Le Merle, L., Crump, H. and Dargan, A. (2022). The State of Fashion 2022. McKinsey and Company. https://bit.ly/4gbESkO
  2. Atefi, R., Salari, M., Coelho, L. and Renaud, J. (2018). The open vehicle routing problem with decoupling points. European Journal of Operational Research, 265(1), 316-327. https://doi.org/10.1016/j.ejor.2017.07.033
  3. DANE. (2022). Encuesta Ambiental Industrial (EAI). Boletín Técnico. https://bit.ly/49k8omj
  4. Dereci, U. and Karabekmez, M. E. (2022). The applications of multiple route optimization heuristics and meta-heuristic algorithms to solid waste transportation: A case study in Turkey. Decision Analytics Journal, 4. https://bit.ly/3OyTJdv
  5. Elshaer, R. and Awad, H. (2020). A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Computers and Industrial Engineering, 140. https://doi.org/10.1016/j.cie.2019.106242
  6. Eppinger, E. (2022). Recycling technologies for enabling sustainability transitions of the fashion industry: Status quo and avenues for increasing post-consumer waste recycling. Sustainability: Science, Practice, and Policy, 18(1), 114-128. https://doi.org/10.1080/15487733.2022.2027122
  7. Erdelic, T. and Carić, T. (2019). A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. Journal of Advanced Transportation, 2019, 1-48. https://doi.org/10.1155/2019/5075671
  8. Furnon, V. y Perron, L. (2019). Google OR-Tools versión 9.8. Rutas para vehículos. https://developers.google.com/optimization/routing/
  9. Gutiérrez-Sánchez, A. and Rocha-Medina, L. B. (2022). VRP variants applicable to collecting donations and similar problems: A taxonomic review. Computers and Industrial Engineering, 164. https://doi.org/10.1016/J.CIE.2021.107887
  10. Hartono, Y., Puspita, F. M., Permatasari, D. I. and Arisha, B. (6-7 March 2018). LINGO-based on robust counterpart open capacitated vehicle routing problem (RC-OCVRP) model of waste transportation in Palembang [Paper]. 2018 International Conference on Information and Communications Technology, Yogyakarta, Indonesia. https://doi.org/10.1109/ICOIACT.2018.8350689
  11. Konstantakopoulos, G. D., Gayialis, S. P. and Kechagias, E. P. (2022). Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Operational Research, 22(3), 2033-2062. https://bit.ly/3Zz6D1n
  12. Lahyani, R., Gouguenheim, A. L. and Coelho, L. C. (2019). A hybrid adaptive large neighbourhood search for multi-depot open vehicle routing problems. International Journal of Production Research, 57(22), 6963-6976. https://bit.ly/4iezdwh
  13. Nazari, M., Oroojlooy, A., Takáč, M. and Snyder, L. V. (3-8 December 2018). RL for Solving the Vehicle Routing Problem [Paper]. 32nd Conference on Neural Information Processing Systems, Montréal, Canada. https://bit.ly/4eUczpX
  14. Niu, Y., Yang, Z., Chen, P. and Xiao, J. (2018). Optimizing the green open vehicle routing problem with time windows by minimizing comprehensive routing cost. Journal of Cleaner Production, 171, 962-971. https://doi.org/10.1016/j.jclepro.2017.10.001
  15. Osam-Pinanko, B. N. (2020). Evaluating the reverse logistics and vehicle routing of clothes: A case study for the Swedish Red Cross [Master Thesis, Vetenskap Och Konst]. https://bit.ly/4gi3KHU
  16. Ramírez, L. J. (27 de junio de 2022). Red Moda Circular: la gran apuesta de Bogotá para disminuir residuos textiles. Alcaldía Mayor de Bogotá. https://bogota.gov.co/mi-ciudad/ambiente/red-moda-circular-como-disminuir-los-residuos-textiles-en-bogota
  17. Sandberg, E. (2023). Orchestration capabilities in circular supply chains of post-consumer used clothes - A case study of a Swedish fashion retailer. Journal of Cleaner Production, 387. https://doi.org/10.1016/j.jclepro.2023.135935
  18. Sinha, P., Dissanayke, D. G. K., Abeysooriya, R. P. and Bulathgama, B. H. N. (2022). Addressing post-consumer textile waste in developing economies. Journal of the Textile Institute, 113(9), 1887-1907. https://bit.ly/419vwls
  19. Stodola, P. (2018). Using metaheuristics on the multi-depot vehicle routing problem with modified optimization criterion. Algorithms, 11(5), 74-88. https://bit.ly/3Zf22zT
  20. United Nations Environment Programme. (2023). Sustainability and Circularity in the Textile Value Chain - A Global Roadmap. París: United Nations. Recuperado el 20 septiembre 2023, de https://www.oneplanetnetwork.org/sites/default/files/2023-10/Full%20Report%20%20UNEP%20Sustainability%20and%20Circularity%20in%20the%20Textile%20Value%20Chain%20A%20Global%20Roadmap.pdf
  21. Wang, X., Choi, T. M., Li, Z. and Shao, S. (2020). An Effective Local Search Algorithm for the Multidepot Cumulative Capacitated Vehicle Routing Problem. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(12), 4948-4958. https://doi.org/10.1109/TSMC.2019.2938298
  22. Wang, Z. and Sheu, J. B. (2019). Vehicle routing problem with drones. Transportation Research Part B: Methodological, 122, 350-364. https://bit.ly/3VIufOT
  23. Yousefikhoshbakht, M. and Darani, N. M. (2019). A Combined Metaheuristic Algorithm for the Vehicle Routing Problem and its Open Version. Journal of AI and Data Mining, 7(1), 169-179. https://doi.org/10.22044/JADM.2018.7116.1840
Sistema OJS 3.4.0.7 - Metabiblioteca |